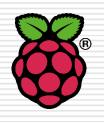


こんなふうに使える! Raspberry Pi

ITAデバイス分科会

Raspberry Piで何ができるの?

家電のコントロールを赤外線で実現!制御 は赤外線を読んで覚える!

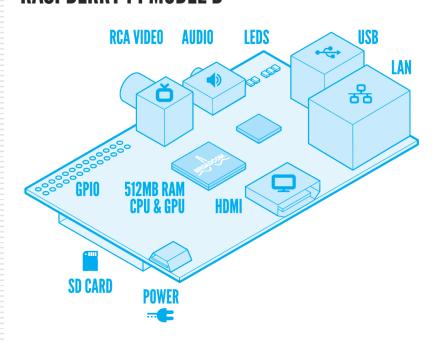


とうとうRaspberryPi搭載のロボットまで!

【出典】

http://blog.livedoor.jp/victory7com/archives/32035619.html

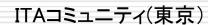
http://www.rapiro.com/

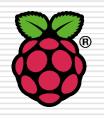

Raspberry Piとは?

- □ 超小型・安価なARMコンピュータ
 - 大きさはクレジットカードサイズ
 - 各種ARM Linuxが動作
 - 電子工作用にGPIO(汎用入出力)ポートが存在
- □ 英国ラズベリーパイ財団が開発
 - 若年層向け教育用パソコンとして開発

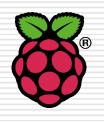
ITAコミュニティ(東京)

RaspberryPi(Model-B)のスペック


RASPBERRY PI MODEL B


【出典】

http://www.raspberrypi.org/help/faqs/



項目	値		
CPU	700MHz/ARM1176JZF-S		
GPU	Broadcom VideoCore IV		
メモリ	512MB		
USBポート	USB 2.0x2		
HDMI	HDMI version 1.3,1.4		
コンポジット出力	RCAピンジャック		
オーディオ出力	3.5mm ジャック		
低レベル周辺機器	GIOP x8,UART, I2C, SPI		
電源	5V 500mA micro USB		
出力電力	3.5W		

RaspberryPiはどこで買えるの?

- □ Amazonで購入できます
- □ `14/2時点ではModel-Bがおすすめ

周辺機器も必要です!

- □ USBキーボード、USBマウス
- □ HDMI出力対応モニター、HDMIケーブル
- □ LANケーブル
- □ ACアダプタ
 - MicroUSB出力、1A以上の電流
- □ SDHCカード
 - 容量4GB~8GB class10がおすすめ

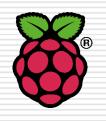
OSItRaspbian!

- □ Debian GNU/LinuxをRaspberry Pi用に 最適化したディストリビューション
- □ アップデートが頻繁でありながら安定
- □ 使用している人が多いので情報量が多い
- □ Raspbian以外にもFedora, Arch Linuxも可

OSインストール!

- NOOBS (offline and network install) のダウンロード http://www.raspberrypi.org/downloads
- □ ZIPを展開した中身をSDカードへコ ピー
- □ コピーしたSDカードをRaspberry Piに挿して起動
- インストールするOSでRaspbianを 選択




電源の入れ方・切り方

- □ Raspberry Piには電源はない!
- □ Micro USBの電源を挿すと起動します!
- □ 電源の切り方は通常のLinuxと同じ
 - \$ sudo shutdown -h now

ITAコミュニティ(東京)

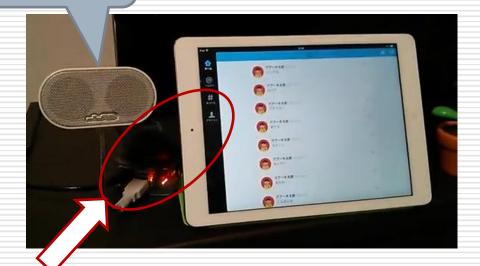
しゃべらせる

しゃべらせるために何をしたの?

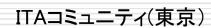
- AquesTalk Pi
 - Raspberry Pi向けの音声合成プログラム
 - \$./AquesTalkPi "漢字も読めます。" | aplay

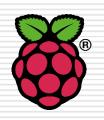
- Twitterと連携すると・・・
 - □ Mention(@ユーザ名のツイート)で送られた言葉を 話すとか
 - □ 定期的に喋りながらツイートするとか

しゃべらせました


□ Twitter連携

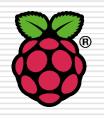
① Twitterに投稿して...




こんばんは

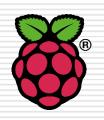
② Raspberry Piで連携して ステレオにしゃべらせる

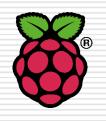
Raspberry Pi


Raspberry Pi GPIO

GPIO

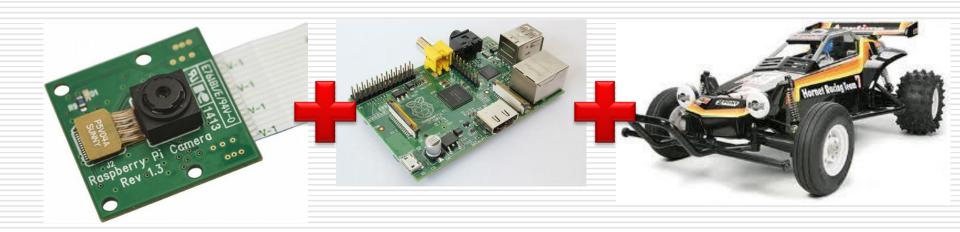
- □ 26-pin の汎用のIOポート
- □ 参考:
 - http://elinux.org/RPi_Lowlevel_peripherals



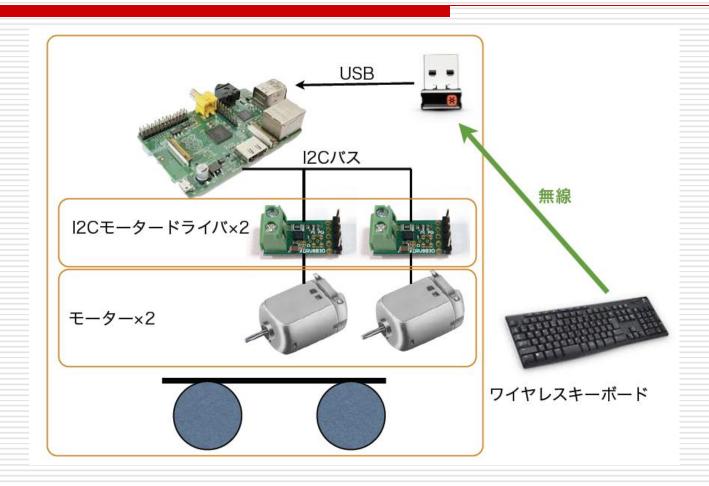

いろいろあるGPIOの制御手段

- デバイスファイルに直書き
 - /sys/class/gpio/...
- WiringPi
 - https://projects.drogon.net/raspberry-pi/wiringpi/
- Rpi.GPIO Python Library (default in Raspbian)
 - https://code.google.com/p/raspberry-gpio-python/
 - Usage: https://code.google.com/p/raspberry-gpio-python/wiki/Main?tm=6
- ☐ WebIOPi
 - https://code.google.com/p/webiopi/
- Scratch

ITAコミュニティ(東京)

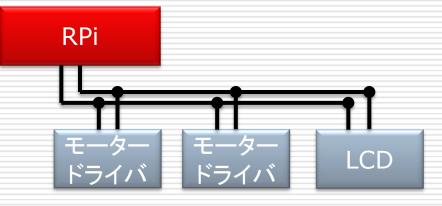


ラジコン

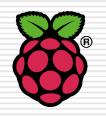


なぜ、ラジコンをつくるのか?

- □ センサーをつけて動かしたい!
- □ 受信したデータを分析してみたい!

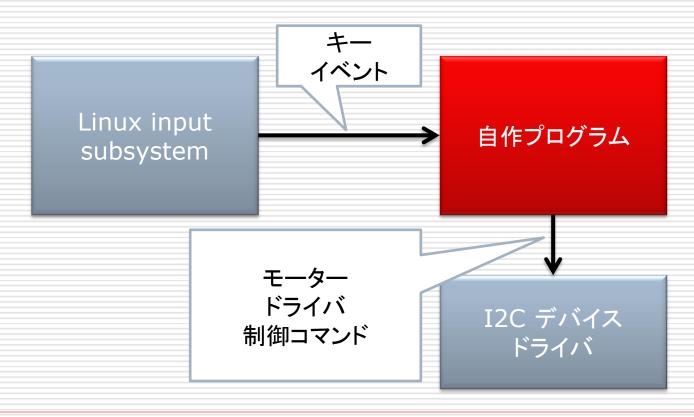


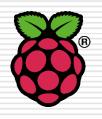
I2Cとは?


- □ Inter-Integrated Circuit
 - アイスクウェアシー と発音
- □ 2本の信号線(SCL/SDA)で複数の機器と接続(接続ピンはGPIOに含まれる)
- □ 1対多接続可能

ITAコミュニティ(東京)

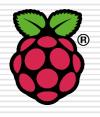
材料は?


どこで購入するの?



あきば です

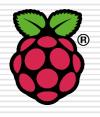
□ ソフトウェアの構成


- □ ソフトウェアの準備
 - I2C tools のインストール

初期状態では無効化されているため使用できるように変更 \$ sudo vi /etc/modprove.d/raspi-blacklist.conf

blacklist spi-bcm2708 #blacklist i2c-bcm2708

最後の行にi2c-devを追加 \$ sudo vi /etc/modules


\$ sudo apt-get install i2c-tools libi2c-dev
\$ sudo reboot

□ I2Cモータドライバ(DRV8830)の認識

モジュールの組み込みを確認 \$ dmesg |grep i2c [4.830278] bcm2708_i2c bcm2708_i2c.0: BSC0 Controller at 0x20205000 (irq 79) (baudrate 100k) [5.053221] bcm2708_i2c bcm2708_i2c.1: BSC1 Controller at 0x20804000 (irq 79) (baudrate 100k)

[11.096122] i2c /dev entries driver

■ Pythonで実装する

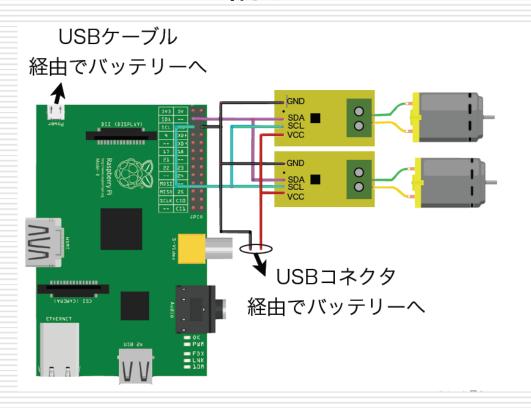
pythonからi2cバスをたたくためのsmbusをインストール \$ sudo apt-get install python-smbus

前進して止まるプログラム

import smbus import time

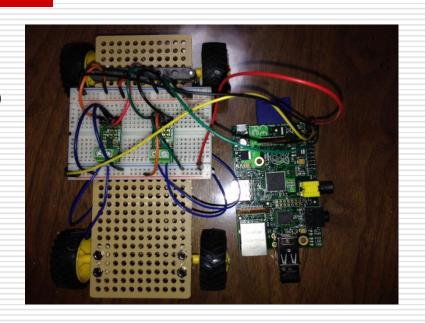
i2c = smbus.SMBus(1) # sudo i2cdetect 1で見つかったので adr = 0x64

adr = 0x64


i2c.write_byte_data(adr,0,0x35) # 内部アドレスOで上位6bit 0x0D=1.04V, 下位2bit 0x01正転 print 'set on' time.sleep(2) i2c.write_byte_data(adr,0,0x34) # 内部アドレスOで上位6bit 0x0D=1.04V, 下位2bit 0x00スタンバイ

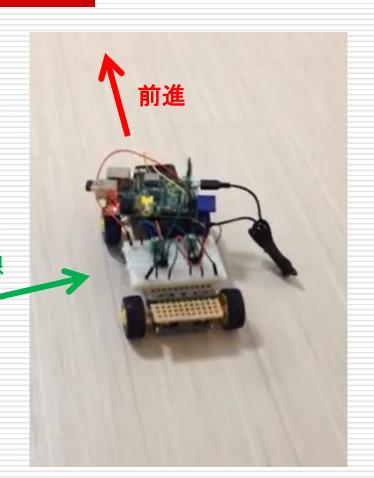
print 'set standby'

ドライバ仕様書に記載されているビット値を指定する。 上位6bitが電圧、下位2bitが制御



□ ハードウェアの構成

- □ ハードウェアの準備
 - I2Cデバイスドライバの はんだごて
 - ブレッドボードでの配線
 - ラジコン本体の組み立て


動かしました

ロ 前進して 停止します


何が大変だったか?

- □ 部品をどこで買うか
- □ 秋葉原の店
- □ 中学生以来のはんだごて
- □ 慣れないI2Cドライバの使用方法

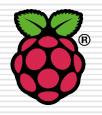
ITAコミュニティ(東京)

センサー(気圧計)

大気圧をI2Cで計測

BMP085の接続

- VCC -- 3.3V, Pin-1
- SDA -- SDA, Pin-3
- SCL -- SCL, Pin-5
- GND -- GND, Pin-14


i2c-bcm2708をコメントアウト \$ sudo vi /etc/modprobe.d/raspiblacklist.conf #blacklist spi-bcm2708 #blacklist i2c-bcm2708

i2c-devを追加 \$ sudo vi /etc/modules snd-bcm2835 i2c-dev

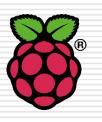
再起動 reboot

BMP085

大気圧をI2Cで計測

```
$ dmesg | grep i2c

[ 5.410821] bcm2708_i2c bcm2708_i2c.0: BSC0 Controller at 0x20205000 (irq 79)


(baudrate 100k)

[ 5.908856] bcm2708_i2c bcm2708_i2c.1: BSC1 Controller at 0x20804000 (irq 79)

(baudrate 100k)

[ 11.640941] i2c /dev entries driver
```

i2c-toolsをインストール \$ sudo apt-get install i2c-tools

大気圧をI2Cで計測

python-smbusをインストール \$ sudo apt-get install python-smbus

pi@pitani:~/Adafruit_BMP085\$ sudo python Adafruit_BMP085_example.py Temperature: 17.30 C (アパートの室温)

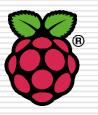
Pressure: 1020.16 hPa

Altitude: -56.38

11/14/2013 @横浜 - 気象庁発表

時 刻	気温	降水 量	風向	風速	日照 時間	湿度	気圧
時	°C	mm	16方 位	m/s	h	%	hPa
21	12.1	0.0	西	1.5		57	1025.2
22	11.7	0.0	北北 西	1.2		62	1024.6
23	11.2	0.0	北北 西	3.2		65	₹024.2

ITAコミュニティ(東京)


その他

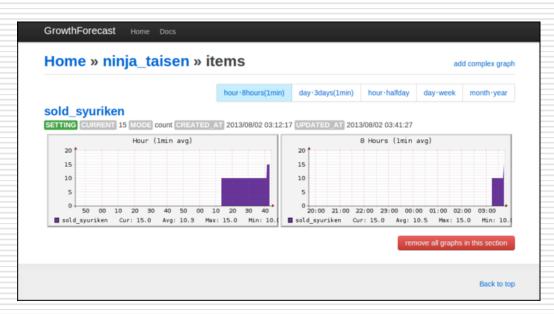
ユーティリティ

- 回路図を描く
 - Fritzing
 - http://fritzing.org/
- ログラフ化
 - Growthforcast
 - MRTG
 - Munin

ITAコミュニティ(東京)

GrowthForecast

\$ sudo apt-get install libcairo2-dev libpango1.0-dev libxml2-dev


\$ curl -L http://cpanmin.us | perl - --sudo App::cpanminus

\$ sudo cpanm -n GrowthForecast

(ここがかなり時間かかる)

実行

\$ sudo growthforecast.pl ポート5125で起動

※ 画像はイメージです