

Web API の保護に係る技術動向と、 API連携認証システムのあり方

株式会社オージス総研 サービス事業本部 テミストラクトソリューション部

八幡孝

自己紹介

八幡孝

株式会社オージス総研

統合認証ソリューション担当

OpenAMコンソーシアム

副会長

OpenIDファウンデーション・ジャパン Enterprise Identity WG

リーダー

統合認証ソリューションを15年以上やってきました

ThemiStruct-WAM

シングルサインオン 認証基盤ソリューション

ThemiStruct-IDM

ID管理ソリューション

ThemiStruct-CM

電子証明書発行・管理 ソリューション

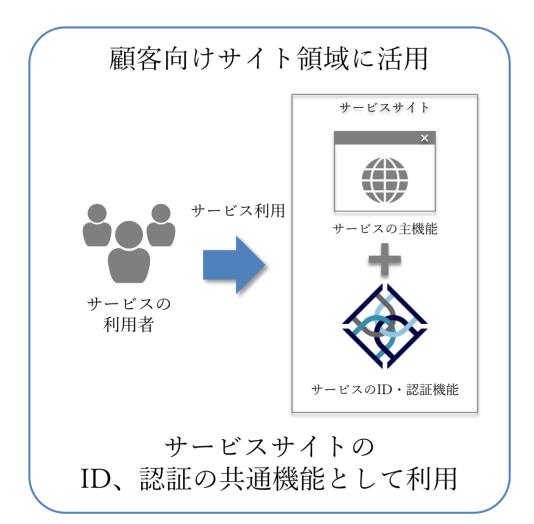
ワンタイムパスワードソリューション

システム監視ソリューション

ThemiStruct-otp

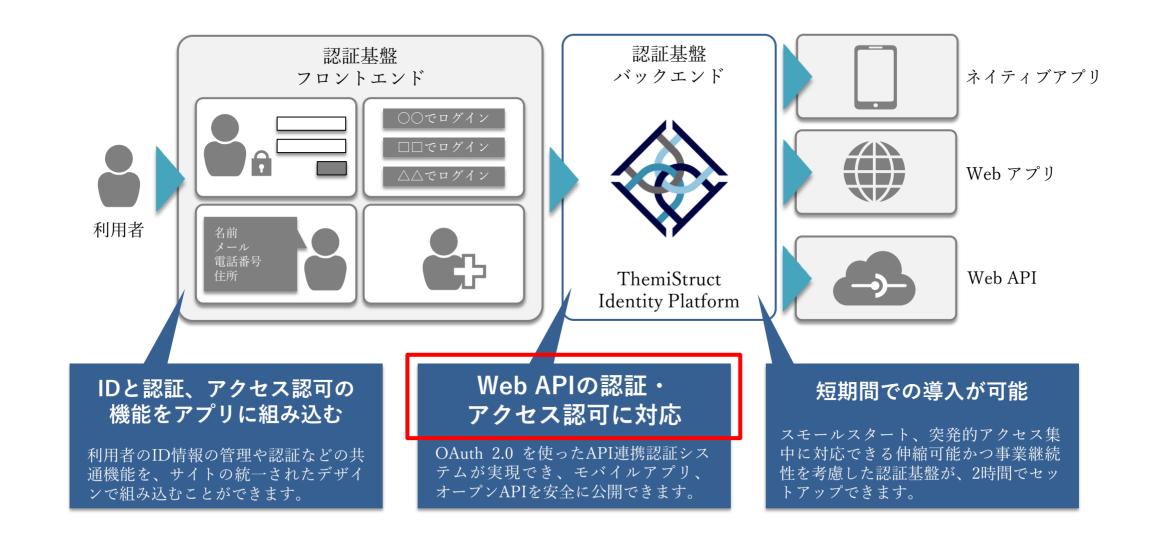
ThemiStruct-MONITOR

APIエコノミー時代の 統合認証パッケージ


認証基盤のユースケースが拡大

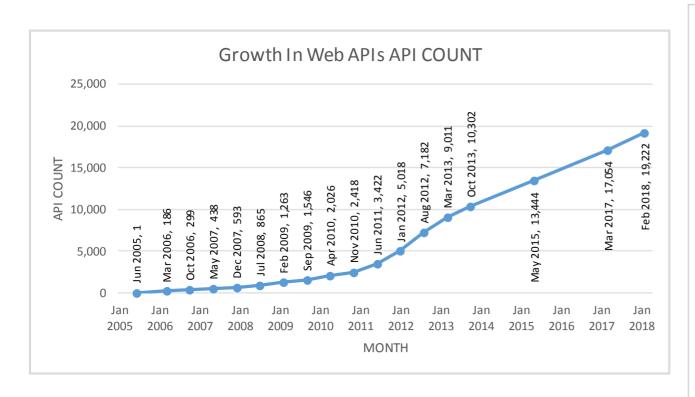
ユースケース	狙い・特長
社内システム利用のガバナンス強化	認証処理の一元化、人事システム等と連動したタイムリーなIDメンテナンス。
取引先へのシステム提供	取引先ユーザーの確実な認証。IPアドレスや電子証明 書の併用。
クラウドサービス利用時、スマホ・ タブレット利用時の認証強化	社外からの利用の制限。社外での利用時の追加の認証の実施。社用端末の識別。 クラウドサービスのIDメンテナンス。
顧客(一般消費者)向けの情報提供、 サービス提供	SSOによる顧客への利便性の提供。複数アプリへの展開。収集した属性の活用。他社サービスとの連携。

これからは モバイルアプリ と オープンAPI対応 が必要に


ユースケース	狙い・特長
社内システム利用のガバナンス強化	認証処理の一元化、人事システム等と連動したタイムリーなIDメンテナンス。
取引先へのシステム提供	取引先ユーザーの確実な認証。IPアドレスや電子証明 書の併用。
クラウドサービス利用時、スマホ・ タブレット利用時の認証強化	社外からの利用の制限。社外での利用時の追加の認証の実施。社用端末の識別。 クラウドサービスのIDメンテナンス。
顧客(一般消費者)向けの情報提供、 サービス提供	SSOによる顧客への利便性の提供。複数アプリへの展開。収集した属性の活用。他社サービスとの連携。
モバイルアプリ化、オープンAPI活用によるアプリ機能、サービスの高度化	アプリ内にパスワード保存不要な安全な認証方式、 SSOに対応できる認証方式への対応。利用者同意に基づく必要最少権限でのデータ連携を 実現する認証・認可方式への対応。

統合認証パッケージ ThemiStruct Identity Platform

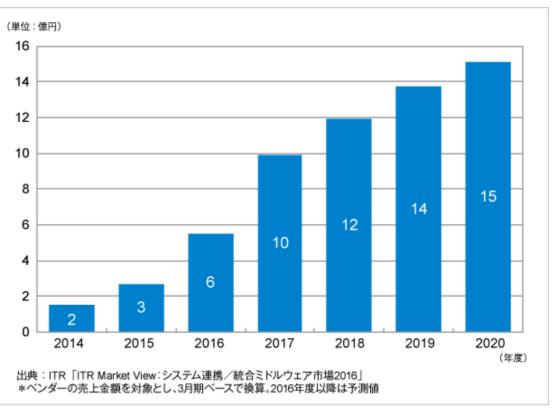
ThemiStruct Identity Platform を『顧客向けサイト』に活用



Web API を活用する際のAPI連携認証システムの必要性

Web API の利用が広がっている

増加を続ける Web API (公開型)


ProgrammableWebの情報を基に当社で加筆・グラフ化

引用元: https://www.programmableweb.com/api-research

「API管理市場売上金額推移および予測」

ITR社プレスリリースより

引用元: https://www.itr.co.jp/company/press/161213PR.html

Web API は xTECH の中核技術である

66

APIの公開、およびそれに伴うデータの公開による新たな事業の創出への期待が需要の喚起を加速させ、デジタルイノベーションやデジタルトランスフォーメーションを実現するコア技術のひとつとして導入が進む

ITR社「ITRがAPI管理市場規模推移および予測を発表」(2016年12月) より

引用元: https://www.itr.co.jp/company/press/161213PR.html

66

オープンAPIは [中略] 他の事業者等と金融機関が協働して、それぞれの保有する情報やサービスを組み合わせ、あるいはお互いに知恵を絞り、オープン・イノベーションを実現していくためのキー・テクノロジーの一つと位置づけられる。

.

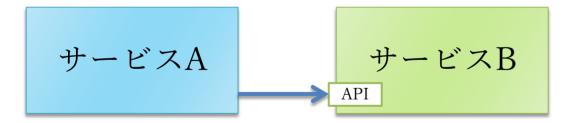
「オープン API のあり方に関する検討会報告書」 (2017年7月)より

引用元: https://www.zenginkyo.or.jp/fileadmin/res/abstract/council/openapi/openapi report 1.pdf

Web API を公開する際の課題

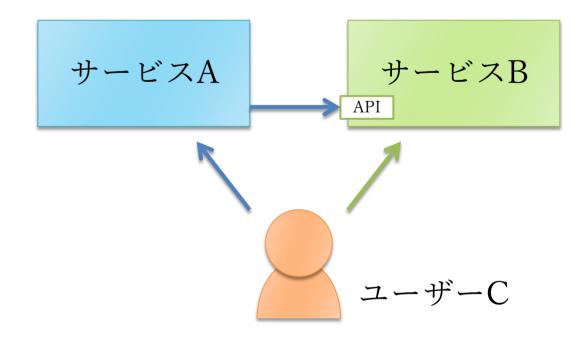
ロクローズドAPI

- ➤ 組織内での Web API の利用
- ▶組織の境界内からのみアクセス可能


ロオープンAPI

- ➤ 組織の境界の外側の第三者への Web API の公開
- ➤ Web API 利用者の<u>認証</u>、機能やデータへの<u>アクセス権管理</u>が 不可欠

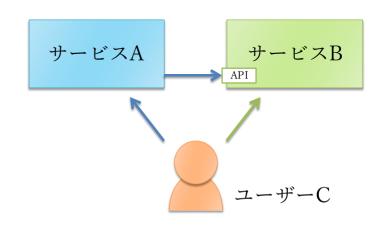
Web API 利用の形態


2者間でのAPI利用

- サービスAが サービスBの機能を利用するために APIにアクセスする。
- サービスB は サービスA 向けの機能・データを提供する。

3者間でのAPI利用

- ユーザーC は サービスA、サービスB の利用者である。
- サービスA は、ユーザーCの意図により、ユーザーC に代わり サービスB の API にアクセスする。
- サービスB は ユーザーC 向けの機能・データーを提供する。



2者間でのAPI利用時の認証

- ロ API のアクセス元を認証する。
 - > API+-
 - ➤ BASIC認証 (IDとパスワード)
 - ▶ クライアント証明書
 - ➤ OAuth 2.0 Client Credentials Grant
 - > ...
- ロ アクセス元が認証できれば、API はアクセス権を判断できる。

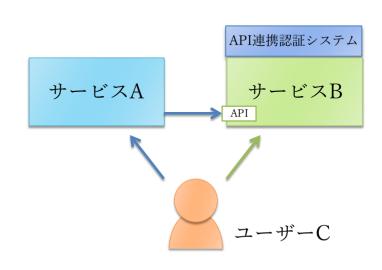
3者間でのAPI利用時の認証

- ロ ユーザーC は サービスA に、アクセスできるデーターや操作を限 定して、サービスB の API ヘアクセスさせたい。
 - ➤ ユーザーIDとパスワードなど、クレデンシャル情報を渡す方式では、全権限をサービスAに与えてしまう。
- ロ 現時点では OAuth 2.0 の利用が唯一の選択肢
 - ➤ ユーザーCの同意に基づき、ユーザーCが 意図した範囲の限定された権限でAPIへの アクセスを許可する方式。
 - ➤ OAuth 2.0 Authorization Code Grant
 - ➤ OAuth 2.0 Implicit Grant

オープンAPIの提供にはAPI連携認証システムが不可欠

- □ OAuth 2.0 を使うには「認可サーバー」の機能が必要である。
- □ 認可(アクセスの許可)の前提としてユーザーが適切な方法で認証されている必要がある。

- ロ オープンAPI提供者は「API連携認証システム」を構築する
 - ▶ユーザーを認証する機能
 - ➤ OAuth 2.0 認可サーバーの機能



Identity Platform を構築することに 他ならない

対応すべき OAuth 2.0 仕様の概略 (最小限)

サービス開発者、API開発者も対応が必要

- ロ オープンAPIの提供者(下図サービスB)
 - ▶ API連携認証システム(Authorization Server)実装者
 - ➤ API開発者
- ロ オープンAPIの利用者(下図サービスA)
 - ▶アプリケーション開発者
 - フロントエンド開発者
 - バックエンド開発者

対応が必要となる OAuth の仕様類

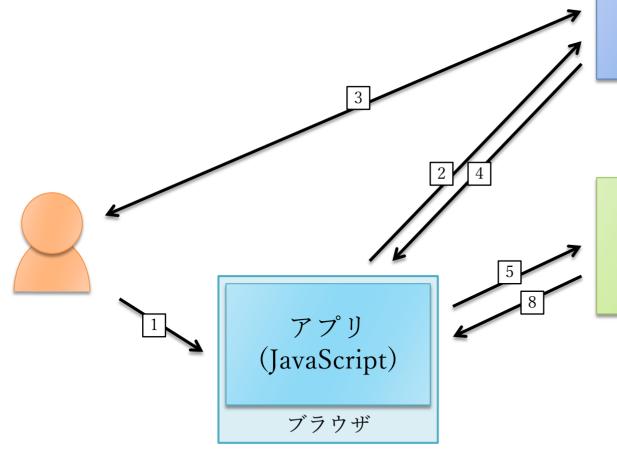
#	仕様	AS 実装者	API 開発者	API利用者 アプリ開発者
1	The OAuth 2.0 Authorization Framework [RFC 6749]	0	_	0
2	Authorization Code Grant	0	_	0
3	Implicit Grant	0	_	0
4	Client Credentials Grant	0	_	0
5	The OAuth 2.0 Authorization Framework: Bearer Token Usage [RFC 6750]	_	0	0
6	OAuth 2.0 Token Revocation [RFC 7009]	0	0	0
7	Proof Key for Code Exchange by OAuth Public Clients [RFC 7636]	0	_	0
8	OAuth 2.0 Token Introspection [RFC 7662]	0	0	_
9	OAuth 2.0 for Native Apps [RFC 8252]	_	_	0

19

API利用時の構成パターン

ロ バックエンドあり (Confidential Client)

ロ バックエンドなし (Public Client)

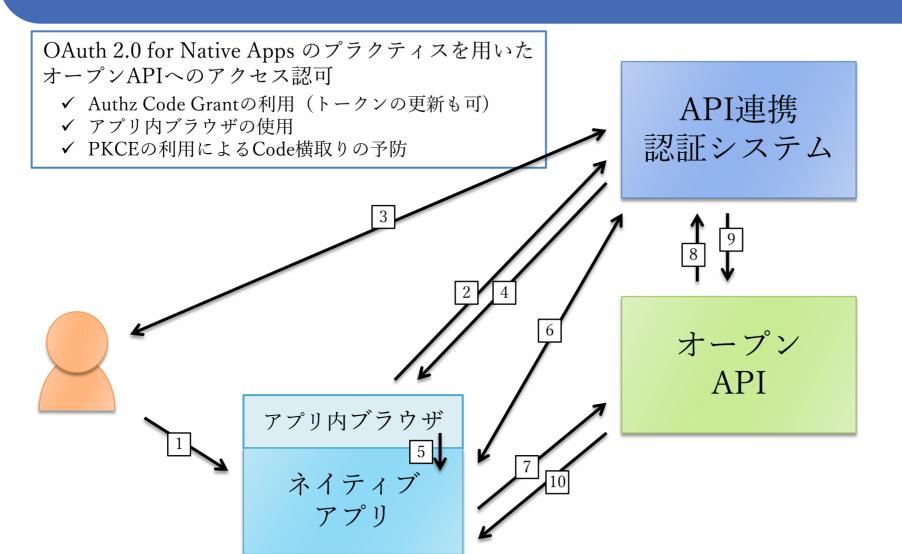


アプリ形態別、対応すべき OAuth の方式

#	ユーザーへの提供形態	バック エンド	OAuthの方式	ポイント
1	ブラウザで動作する	あり	Authz Code Grant	バックエンドがオープンAPIへアクセス。 バックグラウンドでのAPIアクセスのため、 トークン自動更新が必要な場合も。
2	JavaScriptアプリ (モバイルウェブ、SPA、など)	なし	Implicit Grant	JSアプリがオープンAPIへアクセス。 トークン更新が必要な場合はブラウザを 介して行なえる。
3		あり	Authz Code Grant	(①と同じ)
4	ネイティブアプリ	なし	Authz Code Grant w/ PKCE	ネイティブアプリがオープンAPIへアクセス。バックグラウンドでのAPIアクセスのため、トークン自動更新が必要な場合も。
5	Webアプリ	あり (Webアプリ サーバー)	Authz Code Grant	WebアプリケーションサーバーがオープンAPIへアクセス。バックグラウンドでのAPIアクセスのため、トークン自動更新が必要な場合も。

JavaScriptアプリでのAPIアクセス認可

OAuth 2.0 Implicit Grant を用いたオープンAPIへのアクセス認可


API連携 認証システム

オープン API

- 1. ブラウザでJSアプリを起動、ロ グイン開始
- 2. リダイレクトによりOAuth認可 を要求
- 3. ユーザー認証を実行
- 4. オープンAPIアクセス用のアクセストークンを返却
- 5. アクセストークンをつけてオー プンAPIにアクセス
- 6.~7. アクセストークンの情報を 確認 (ユーザー、Scope、有効 期限、など)
- 8. オープンAPIが情報を使って JSアプリが動作

ネイティブアプリでのAPIアクセス認可

- 1. ネイティブアプリを起動、ログイン開始
- 2. アプリ内ブラウザを使いOAuth 認可を要求 (PKCEを併用)
- 3. ユーザー認証を実行
- 4. アクセストークンを取得するためのCodeを返却
- 5. アプリ内ブラウザからネイティ ブアプリにCodeを返却
- 6. Codeをアクセストークンに交換 (PKCEを併用)
- 7. アクセストークンをつけてオー プンAPIにアクセス
- 8.~9. アクセストークンの情報を 確認 (ユーザー、Scope、有効 期限、など)
- 10. オープンAPIが情報を使ってネーイティブアプリが動作

オープンAPIの振る舞いは、JSアプリ、ネイティブアプリで共通。

バックエンドサーバーを持つアプリでのAPIアクセス認可

- 1. アプリを起動、ログイン開始
- 2. バックエンドはネイティブアプリ (Napp)、ブラウザを通じてOAuth認可を要求
- 3. ユーザー認証を実行
- 4. アクセストークンを取得するためのCodeを返却
- 5. ブラウザから(NAppの場合は NAppを経由して)バックエン ドサーバーにCodeを返却
- 6. Codeをアクセストークンに交換
- 7. アクセストークンをつけてオー プンAPIにアクセス
- 8.~9. アクセストークンの情報を 確認 (ユーザー、Scope、有効 期限、など)
- 10. オープンAPIが情報を使って バックエンドサーバー上のアプ リが動作

オープンAPIの振る舞いは、JSアプリ、ネイティブアプリと共通。

今後対応が必要となってくる仕様 (OAuth 2.0, OpenID Connect 関連)

金融API向けにOAuth実装仕様の策定が進行中

- □ OpenID Foundation (Global) の Financial API WG が策定
 - https://openid.net/wg/fapi/
- ロ OAuthの実装仕様について、以下の2つがすでに Implementer's Draft となり、公開されている。
 - > Part 1: Read Only API Security Profile (Implementer's Draft).
 - > Part 2: Read & Write API Security Profile (Implementer's Draft).
- ロ 以下の仕様についても検討が進行中。
 - > Client Initiated Backchannel Authentication Profile.

Part 1: Read Only API Security Profile 1

#	Authorization Server への要求事項	特に注目したい箇所
1	shall support confidential clients;	_
2	should support public clients;	_
3	shall provide a client secret that adheres to the requirements in section 16.19 of [OIDC] if a symmetric key is used;	_
4	shall authenticate the confidential client at the Token Endpoint using one of the following methods: 1. TLS mutual authentication [MTLS]; 2. JWS Client Assertion using the client_secret or a private key as specified in section 9 of [OIDC];	
5	shall require a key of size 2048 bits or larger if RSA algorithms are used for the client authentication;	_
6	shall require a key of size 160 bits or larger if elliptic curve algorithms are used for the client authentication;	_
7	shall support [RFC7636] with S256 as the code challenge method if it supports public clients;	_
8	shall require Redirect URIs to be pre-registered;	_
9	shall require the redirect_uri parameter in the authorization request;	_
10	shall require the value of redirect_uri to exactly match one of the pre-registered Redirect URIs;	_
11	shall require user authentication at LoA 2 as defined in [X.1254] or more;	
12	shall require explicit consent by the user to authorize the requested scope if it has not been previously authorized;	_

- OAuth と OpenID Connect を併用(OIDCの仕様に基づきOAuthの認可要求を行なう)
- Confidential Client の認証をより強度が高い方式の利用が指定される
 - ▶ 事実上の OAuth 2.0 の追加仕様 RFC 7521, RFC 7523 への対応
- □ アイデンティティ情報更新時の再認証など信頼性を確保する仕組みの導入

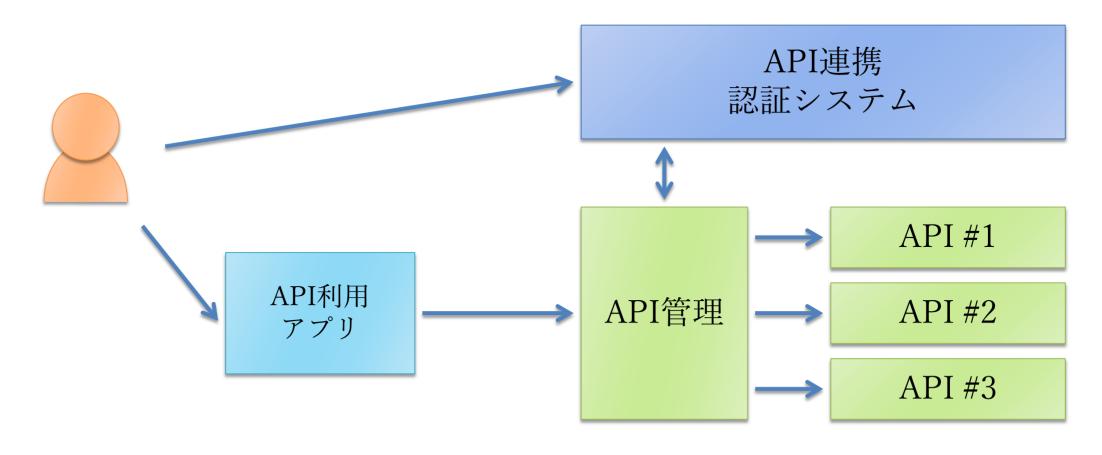
Part 1: Read Only API Security Profile 2

#	Authorization Server への要求事項	特に注目したい箇所
13	shall verify that the Authorization Code (section 1.3.1 of [RFC6749]) has not been previously used if possible;	_
14	shall return token responses that conform to section 4.1.4 of [RFC6749];	_
15	shall return the list of allowed scopes with the issued access token;	
16	shall provide opaque non-guessable access tokens with a minimum of 128 bits as defined in section 5.1.4.2.2 of [RFC6819].	_
17	should clearly identify long-term grants to the user during authorization as in 16.18 of [OIDC]; and	
18	should provide a mechanism for the end-user to revoke access tokens and refresh tokens granted to a client as in 16.18 of [OIDC].	
19	shall support the authentication request as in Section 3.1.2.1 of [OIDC];	_
20	shall perform the authentication request verification as in Section 3.1.2.2 of [OIDC];	_
21	shall authenticate the user as in Section 3.1.2.2 and 3.1.2.3 of [OIDC];	_
22	shall provide the authentication response as in Section 3.1.2.4 and 3.1.2.5 of [OIDC] depending on the outcome of the authentication;	_
23	shall perform the token request verification as in Section 3.1.3.2 of [OIDC]; and	_
24	shall issue an ID Token in the token response when openid was included in the requested scope as in Section 3.1.3.3 of [OIDC] with its sub value corresponding to the authenticated user and optional acr value in ID Token.	_

- OAuth, OpenID Connect を併用(OIDCの仕様に基づきOAuthの認可要求を行なう)
- □ 長時間有効な認可 (Access Token, Refresh Token発行) には明示的な同意が必要に。
- 発行された Access Token の scope を明示的に応答することが必要に。

Part 2: Read & Write API Security Profile

#	Authorization Server への要求事項	特に注目したい箇所
1	shall require the request or request_uri parameter to be passed as a JWS signed JWT as in clause 6 of [OIDC];	
2	shall require the response_type values code id_token or code id_token token;	
3	shall return ID Token as a detached signature to the authorization response;	_
4	shall include state hash, s_hash, in the ID Token to protect the state value;	
5	shall only issue holder of key authorization code, access token, and refresh token for write operations;	
6	shall support [OAUTB] or [MTLS] as a holder of key mechanism;	
7	shall support user authentication at LoA 3 or greater as defined in [X.1254];	
8	shall support signed ID Tokens; and	_
9	should support signed and encrypted ID Token.	


- OpenID Connect のより深いレベルの仕様の実装
 - ▶ JWTリクエストパラメーター、JWSとJWEによる署名と暗号化されたIDトークン
- IDトークンを使った認可レスポンスへの署名 (at_hash, c_hash, s_hashへの対応)
- □ 記名式トークン、記名式認可コード発行への対応
- OAuth の策定中仕様 (OAUTB, MTLS) の実装
- □ 多要素認証への対応

現時点で対応を検討しておくべき仕様

#	仕様	AS 実装者	API 開発者	API利用者 アプリ開発者
1	OpenID Connect Core 1.0	0	_	0
2	[OAUTB], [MTLS] を使った記名式トークン、認可コード発行への対応	0	0	0
3	署名、暗号化されたIDトークンのサポート [Sec.2][Sec.16.14]	0	0	0
4	長期間有効なトークン発行時の適切な同意画面の表示	0	_	_
<u>(5)</u>	OAuth 2.0 トークン発行時の scope クレームの応答への対応	0	_	0
6	Assertion Framework for OAuth 2.0 Client Authentication and Authorization Grants [RFC 7521]	0	_	0
7	JSON Web Token (JWT) Profile for OAuth 2.0 Client Authentication and Authorization Grants [RFC 7523]	0	_	0
8	OAuth 2.0 Token Binding [OAUTB] [draft-ietf-oauth-token-binding-05]	0	0	0
9	OAuth 2.0 Mutual TLS Client Authentication and Certificate Bound Access Tokens [MTLS] [draft-ietf-oauth-mtls-07]	0	0	0

API管理のソリューション の位置づけはより重要に

- □ 策定される新しい仕様への追従を個々の API で進めるのは困難
- □ API管理ソリューションを使った集中管理が必要になっていく

必ずしも金融向けのグレードである必要はない

- ロ FAPI の Profile は金融API向け
- □ APIが提供する機能、情報のリスクを評価してどこまで対応する かを決める
- 対応策は、FAPI Profile が参考になる

Table 6-2 – Potential impact at each level of assurance

Possible consequences of authentication failure		Potential impact of authentication failure by LoA			
		2	3	4	
Inconvenience, distress or damage to standing or reputation	Min*	Mod	Sub	High	
Financial loss or agency liability	Min	Mod	Sub	High	
Harm to the organization, its programs or public interests	N/A	Min	Mod	High	
Unauthorized release of sensitive information	N/A	Mod	Sub	High	
Personal safety	N/A	N/A	Min Mod	Sub High	
Civil or criminal violations	N/A	Min	Sub	High	
* Min=Minimum; Mod=Moderate; Sub=Substantial; High=High.					

引用元: ITU-T Recommendation X.1254 Entity authentication assurance framework, p7 (2012年9月)

当社ソリューションのご紹介

統合認証ソリューション ThemiStruct を提供しています

ThemiStruct-WAM

シングルサインオン 認証基盤ソリューション

ThemiStruct-IDM

ID管理ソリューション

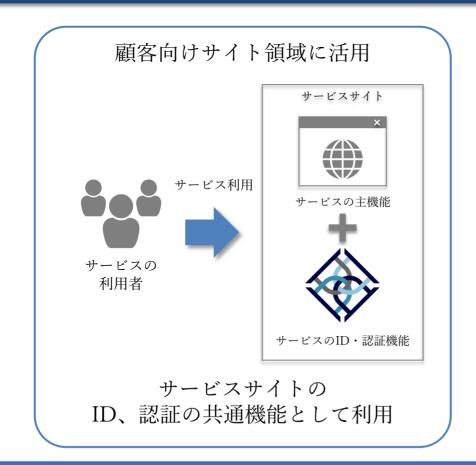
ThemiStruct-CM

電子証明書発行・管理 ソリューション

ワンタイムパスワードソリューション

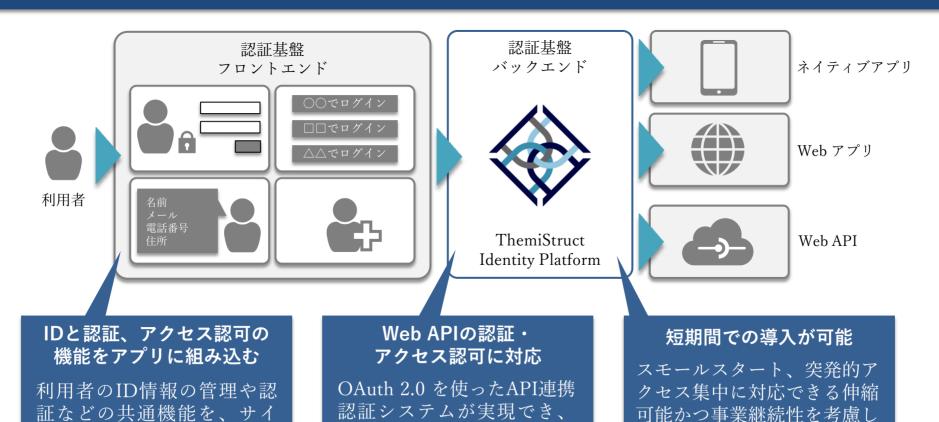
システム監視ソリューション

ThemiStruct-otp


ThemiStruct-MONITOR

APIエコノミー時代の 統合認証パッケージ

統合認証パッケージ ThemiStruct Identity Platform


ThemiStruct Identity Platform は、ITシステム利用者のアイデンティティ管理と認証の機能を提供します。顧客向けにサービスを展開したり、従業員向けにアプリケーションを展開する際に必要となる、共通ID基盤の構築に活用いただけます。

ThemiStruct Identity Platform を『顧客向けサイト』に活用

ThemiStruct Identity Platform を『顧客向けサイト』環境に適用した場合、サービスの利用者IDの管理と認証の機能を担うバックエンドサービスとして稼働します。これらの機能のUIにあたるアプリケーションの実装を支援し、実際のサービスアプリと接続するためのインタフェースを提供します。

モバイルアプリ、オープン

APIを安全に公開できます。

た認証基盤が、2時間でセッ

トアップできます。

トの統一されたデザインで

組み込むことができます。

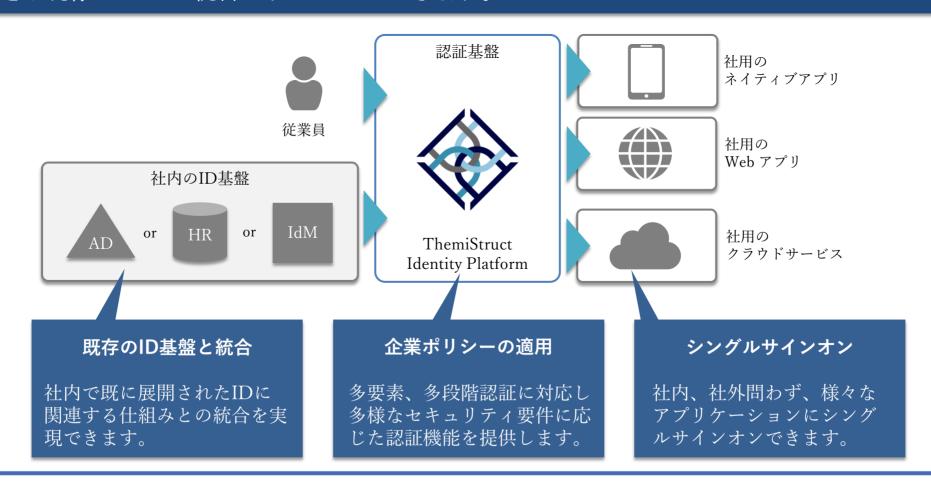
『顧客向けサイト』に向けた3大特長

ロ IDとユーザー認証、アクセス認可の機能をアプリに組み込む

▶ 利用者のID情報の管理や認証など利用者IDに関連する共通機能の実装を支援する『フレームワーク』と『Web API』を提供します。これらを活用し、貴社のサービスサイトに認証機能やパスワード変更機能、アプリケーションへのID連携機能などを組み込むことができます。

■ Web APIの認証・アクセス認可に対応

➤ OAuth 2.0 の技術仕様に基づいた認証・アクセス認可機能を提供します。 OAuth 2.0 を使ったAPI連携認証システムが実現でき、モバイルアプリ、 オープンAPIを安全に公開できます。


ロ 短期間での導入が可能

➤ AWSマネージドサービスのコンポーネントを活用し、導入時におけるキャパシティやアベイラビリティプラニングから解放します。スモールスタート、突発的アクセス集中に対応できる伸縮可能かつ事業継続性を考慮した認証基盤が、2時間でセットアップできます。

ThemiStruct Identity Platform を『エンタープライズ』に活用

ThemiStruct Identity Platform を『エンタープライズ』環境に適用した場合、社内外のアプリケーションにシングルサインオン可能な認証基盤を提供できます。また、企業のポリシーにあった認証機能の設定や既存のIDとの統合をすることができます。

『エンタープライズ』に向けた3大特長

ロ シングルサインオン

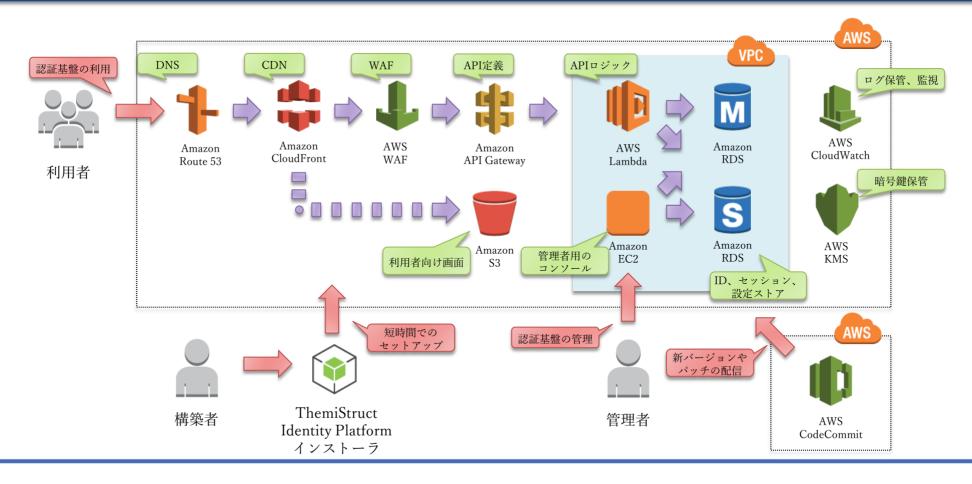
▶ OpenID Connect などの標準技術仕様を用いたシングルサインオンに対応 しています。社内、社外問わず、様々なアプリケーションにシングルサイ ンオンできます。

ロ 企業ポリシーの適用

▶ ユーザーの属性や状態、利用するアプリケーションに応じて、柔軟な認証ポリシーをデザインすることができます。例えば、社内ネットワークからのアクセスの場合、IDとパスワードの認証を提供し、外出先からのアクセスの場合、追加でワンタイムパスワード認証を提供するといったポリシーを展開することができます。

□ 既存のID基盤と統合

▶ 既存のID基盤と統合に向けたアカウント管理APIを提供しています。これにより、社内で既に展開されたIDに関連する仕組みとの統合を実現できます。



サーバーレスアーキテクチャを採用

ThemiStruct Identity Platform は Amazon Web Services のマネージドサービス上で稼働するため、一定のアベイラビリティ、スケーラビリティを実現することができます。また、以下の構成のセットアップを約2時間で完了できるインストーラを提供しています。

オージス総研のAPIソリューション

- オージス総研のクラウドとAPI開発・運用の知見を集めたサービス
 - FintechやIoTなどのデジテルビジネスに必要不可欠なAPI公開を実現
 - API導入のための技術調査・検討からAPIの公開・運用までフルカバー

■API導入コンサルティングサービス

✓ ロードマップの策定援や、初期システムアーキテクチャ策定、 API導入PoC等によりAPI導入を支援

■API構築サービス

✓ベストプラクティスを組み込んだAPI開発スタックを使い、お客様の 環境に合ったAPIプラットフォーム、APIを迅速かつ効率的に開発

■API運用サービス

- ✔継続的なAPIの改善・バージョンアップ
- ✓安定稼働のためのAPIプラットフォームの監視・障害対応
- ✓API利用者向けサポートサービス

まとめ

まとめ

- ロ オープンAPIを提供するためには、API連携認証システムの実現が必要となっている。
- ロ API連携認証システムは、ユーザー認証とアクセス認可の機能を必要とし、Identity Platform を構築することに他ならない。
- □ OpenID Connect, SAMLといったID連携の標準技術に加え、 OAuth 2.0 の標準仕様群に継続的に対応していく必要がある。
- 当社では ThemiStruct Identity Platform を開発・提供し、 API連携認証システム の構築ニーズに対応。

ご清聴ありがとうございました

【お問い合わせ先】

株式会社オージス総研

TEL: 03-6712-1201 / 06-6871-7998

mail: info@ogis-ri.co.jp

